

Ningbo Nachuan Automation Technology Co., Ltd.

Address: No.36, Moganshan Road, Beilun District, Ningbo, China

Tel: +86 0574-86813008

Technical support: +86 13777967724

Agent negotiation: +86 13515887668

Website: www.nachuan.cn

Guangzhou office: Huide Commercial, Tianhe District, Guangzhou City, Guangdong Province, China

Foshan Office: Dali Town, Foshan City, Guangdong Province, China

Suzhou Office: Liandong U Valley, Mudu Town, Wuzhong District, Suzhou City, Jiangsu Province, China

Kunshan Office: Yushan Town, Kunshan City, Jiangsu Province, China

Lishui Office: Green Valley Avenue, Lishui City, Zhejiang Province, China

Wenzhou office: Bank of Communications Square, Wenzhou City, Zhejiang Province, China

Lishui Office: Green Valley Avenue, Lishui City, Zhejiang Province, China

宁波纳川自动化科技有限公司 网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

SVD2300-RS High Voltage Servo Drive User's Manual

宁波纳川自动化科技有限公司 网 站: www.nachuan.cn 料音号: NBnachuan 公众号: NBnachuan

Table of Contents

I. Product Introduction	4
1. Overview	4
2. Technical features	4
3. Application Fields	4
II. Electrical, mechanical and environmental indicators	5
1. Electrical indicators	5
2. Use of the environment and parameters	5
3. Mechanical Installation Dimension Drawing	6
III. Drive interface and wiring introduction	6
1. Control signal interface circuit diagram	9
2. Control signal timing diagram	10
3. Control signal mode setting	11
IV. Operating Panel	11
1. Mode Introduction	12
2. Monitoring parameters	12
3. Drive internal parameters	13
4. Fault alarm and treatment	15
V. Control mode and communication protocol	16
1. Conventional position control mode (Pn023 = P-PUL)	16
2. External IO speed and torque control mode (Pn023 = S-IO)	17
3. External potentiometer speed control mode (Pn023 = S-vr)	17
4. Modbus position, speed, torque and other control modes	18
VI. Typical application wiring diagram	24

I. Product Introduction

1. Overview

SVD2300-RS has three working modes: position, speed and torque. It can set internal parameters and start/stop control in three working modes through ModBUS-RTU communication.

2. Technical features

- Adopting advanced servo control technology;
- ◆ Adopting a highly integrated solution to achieve a smaller size;
- With Regenerative resistor and integrated dynamic braking function, applicable to more industries;
- With software filtering and hardware filtering, anti-high-frequency interference capability is greatly enhanced;
- ◆ Support single-phase or three-phase 220V AC input, greatly reducing wiring requirements;
- With digital screen, the drive parameters can be modified offline without connecting to PC;
- ◆ Support ModBus communication protocol, speed control mode and torque control mode.

3. Application Fields

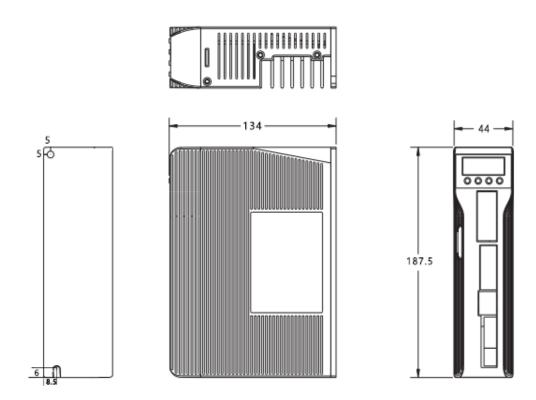
Widely used in small and medium-sized automation equipment and instruments, such as: screw rod, synchronous belt, reducer, rack and pinion, etc., but also accept customer-specific function customization, Truly achieving industry customization.

II.Electrical, mechanical and environmental indicators

1. Electrical indicators

	SVD2300-RS		
Parameter	Minimum	Maximum	Unit
	value	value	Ullit
Continuous output current		60	A
AC single-phase and			
three-phase supply	180	230	V _{AC}
voltage			
Pulse frequency	0	150K	Hz
Insulation resistance	100	/	ΜΩ
Alarm output logic	7	16	A
current	/	10	mA
Alarm output port voltage		0/24	V

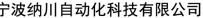
2. Use of the environment and parameters


Cooling method	Natural cooling or external heat sink	
	Use Environment	Avoid oil mist, dust
Operating	Temperature.	-20°C to 70°C
environment	Humidity	40-90%RH
	Vibration	10~55Hz/0.15mm
Storage	-20°C-65°C	
Temperature	-20 C-03 C	
Weight	Approx. 1500g	

网 站: www. nachuan. cn 抖音号: NBnachuan

公众号: NBnachuan

3. Mechanical Installation Dimension Drawing



- (1) The driver's reliable operating temperature is normally within 60°C, and 80°C for the motor;
- (2) Mount the driver with upright side mounting. If necessary, install a fan close to the drive to force heat dissipation and ensure that the drive works within the reliable operating temperature range.

III. Drive interface and wiring introduction

1. Interface definition

(1) Power input port

宁波纳川自动化科技有限公司 网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

Pin number	Symbol	Name	Description
1	P+	Brake resistor common	DC bus voltage
		terminal	
2	D		Shorted to P+, internal
	D		resistor braking
3	С	External	
		Regenerative	
		resistor	
4	T	T-phase 220V	Connect to three-phase
			transformer output T-phase
5	S	S-phase 220V	Connect to three-phase
			transformer output S-phase
6	R	R-phase 220V	Connect to three-phase
			transformer output R phase

2) Motor Wiring Ports

Pin number	Symbol	Name	Description
1	U	Motor U phase	External motor U-phase
			winding
2	V		External motor V-phase
	V	Motor V phase	winding
3	W	Motor phase W	External motor phase W
			winding
4	PE	To earth	Connect to motor housing

3) Encoder signal input port

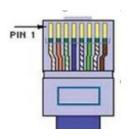
Pin number	Symbol	Name	Description
1			
2			
3	5V	Encoder power supply positive	+5V
4	GND	Encoder power negative	0V
5	A	Absolute 485 communication	
		phase A	
6	В	Absolute 485 communication	
		phase B	

4) Control signal port

宁波纳川科技

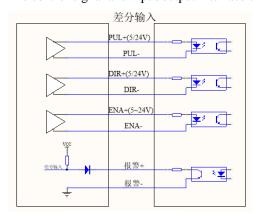
宁波纳川自动化科技有限公司 网 站: www.nachuan.cn 料音号: NBnachuan 公众号: NBnachuan

Pin number	Symbol	Name	Description
1	PUL+24	Pulse positive	Pulse input 24V+
		input	
2	PUL+5	Pulse positive	Pulse input 5V+
		input	
3	PUL -	Pulse negative	Pulse input -
		input	
4	DIR+24	Direction	Direction input 24V+
		positive input	
5	DIR +5	Direction	Direction input 5V+
3	DIK 13	positive input	Direction input 5 V
6	DIR-	Input 6	Direction input-
7	ALM+	Alarm positive	Internal triode 0C gate
8	ALM-	Alarm	
		Negative	
9	EN+	Enable	Supports 5-24V input
		Positive	
10	EN-	Enable	
		negative	
11	VR+	Potentiometer	External 4.7K adjustable resistor
		positive	
12	VR+	Potentiometer	
		Negative	
13	O+	Output positive	Output function definable
14	B-	Brake negative	Brake negative
15	B+/24+	External 24V	External 24V supply positive, holding
		positive	brake positive
16	O-/24-	External 24V	External 24V power supply negative,
		power supply	output model negative
		negative	

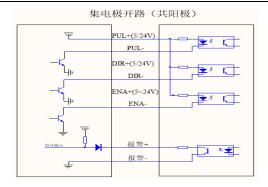

5) USB input port

The interface adopts the standard TypeC, which can be connected to our specialized software for parameter debugging.

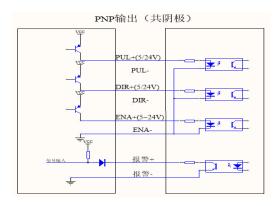
6) Communication network port



Communication	485A	485B	Isolated GND
interface			
RJ45 network	1	2	5
port			


It is recommended to use twisted shielded wire to ensure the quality of communication.

2. Control signal interface circuit diagram


The control signal and input/output interface circuit diagrams are as follows

Differential

Common

Common Cathode

3. Control signal timing diagram

In order to avoid some malfunctions and deviations, PUL, DIR and ENA should meet certain requirements, as follows

shown in Figure 4:

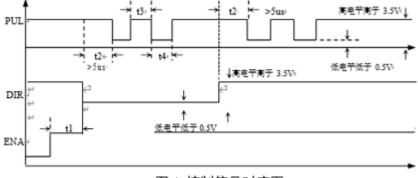
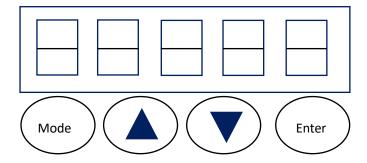


图 4 控制信号时序图↔

Notes:


- (1) t1:ENA enable signal is at least 5us ahead of DIR, and it is generally recommended to suspend.
- (2) t2:DIR determines its state high or low at least 5us in advance of the falling edge of PUL.
- (3) t3:Pulse width greater than 2.5us.
- (4) t4:The width of low level is greater than 2.5us.

4. Control signal mode setting

Pulse trigger edge and single-double pulse selection: through the driver parameter (Pn) mode or PC software to set the pulse rising edge or falling edge trigger is valid; you can also set a single pulse or double pulse.

IV. Operating Panel

The keys below the digital tube screen from left to right are Mode, Up, Down and Enter.

The functions of the keys on the display board are shown in the table below:

Compared with the same type of drives on the market, SVD2300-RS has a more friendly HMI design, the drive will be automatically stored after setting the parameters, and when adjusting larger data (e.g., from 0 to 10,000), you can use the toggle key to switch the number to the 10,000 digit directly and set it to 1 through the up key, instead of having to keep pressing the up key, which greatly optimizes the process of parameter setting.

Key Name	Symbol	Function Introduction
Toggle	Mode	For mode switching and parameter digit switching
Up key	A	For submenu switching and digit increase
Down key		For submenu switching and digit decrease
OK key	Enter	For sub-menu switching and number confirmation

1. Mode Introduction

The complete parameters of each mode are shown in the table below. The drive has three functions:

Fn000 belongs to the historical alarm code view, after pressing the confirmation key to enter, you can use the up key to view the previous alarm code record of the drive;

Fn001 belongs to the restoration of factory settings, press the confirmation key to go in and then long press the confirmation key, if the screen displays donE after the need to re-power up, then the drive successful initialization;

Fn002 belongs to the trial run, after pressing the confirmation key to enter, you can make the motor rotate by long pressing the up key and down key.

Mode Name	Symbol	Function Introduction	
Monitor Mode	RUN	Used for monitoring the status of various data (e.g., speed) of the	
		motor and driver.	
Parameter	Pn	Setting of the drive's internal parameters, excluding	
mode		EtherCAT-related parameters.	
Function mode	Fn	The drive has the functions of trial operation, restoration of	
		factory settings and alarm code view.	

2. Monitoring parameters

Monitoring parameter	Symbol	Function
Speed	SPEEd	For monitoring the motor speed in r/min
Encoder low	Enc_L	For monitoring the motor encoder position, this bit is low
Encoder high bit	Enc_H	Enc_H for monitoring the motor encoder position, this bit

宁波纳川自动化科技有限公司 网 站: www.nachuan.cn 料音号: NBnachuan 公众号: NBnachuan

		is high.
Input pulse low	D.J. I	For monitoring the number of pulses input to the driver,
bit	Pul_L	this bit is low
I	D-1 II	High bit for monitoring the number of pulses to the input
Input pulse high	Pul_H	driver.
Position		For monitoring the negition deviction of the motor this hit
deviation low	PErr_L	For monitoring the position deviation of the motor, this bit
bit		is the low bit
Position		
deviation high	PErr_H	Position deviation of the motor, this bit is high.
bit		
IO status	Io_Io	Used to monitor the status of the drive IOs
Bus voltage	V_buS	Used to monitor the bus voltage of the motor in V
Current	A 1.E	
electrical angle	AngLE	For monitoring the current electrical angle
Torque	Т	S
monitoring	Trq-	for monitoring the torque
Drain time	P-duty	Used to display the Regenerative resistor working time

3. Drive internal parameters

Parameter	Parameter name	Paramet	Parameter	Explanation
number		er value	range	
			5415A	5415A. 850W servo motor
Pn000	Motor model	14615	8315A	8315A 1300W servo motor
Phoo	Motor model	14013	11515	11515 1800W servo motor
			14615	14615. 2300W servo motor
Pn001	Pulses per	1000	200-65535	Number of pulses per revolution of
PHOOT	revolution	1000	200-03333	the motor
Pn002	Default motor	0 0~1		0: Forward rotation 1: Reverse
F11002	steering	U	0~1	rotation
Pn003	Motor Rigidity	5	1~10	For setting motor rigidity
Pn004	Inertia Ratio	5	1~30	For setting the load motor inertia
F11004	mertia Katio	3	1~30	ratio
Pn005	Position loop Kp	7	1~100	For position PID setting
Pn006	Position feed	0	0.500	For position DID setting
P11000	forward	0	0~500 For position PID setting	
Pn007	Current filter	20	0~65535	For current filtering
Pn008	Speed Filter	100	0~65535	For speed filtering
D:: 000	Filter Smoothing	0	0. 65525	Unit: us Command in place time,
Pn009	Time	0	0~65535	after setting, note that there may be

宁波纳川自动化科技有限公司 网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

	J MARINITIA					
				a slight delay in place.		
Pn010	Enable control signal polarity selection	1	0~1	0: high level 1: low level		
Pn011	Fault output polarity selection	1	0~1	0: low level 1: high level		
Pn012	Pulse input mode	0	0~1	0: pulse + direction 1: double pulse		
Pn013	Pulse input edge selection	0	0~1	0: Rising edge, 1: Falling edge active		
Pn014	Overload alarm detection time	10	0~65535	Overload alarm delay setting		
Pn015	Number of position overrun turns	5	0~65535	Used to adjust the sensitivity of overload alarm, the alarm will be activated when the real-time deviation exceeds the set value		
Pn016	Number of encoder lines for positioning completion	20	0~2500	In place accuracy		
Pn017	Maximum speed limit	2000	200~3000	Maximum speed		
Pn018	Positive torque limit	200	0~250	For forward torque limit		
Pn019	Reverse torque limit	200	0~250	For reverse torque limit		
Pn020	Acceleration time constant	0	0~65535	For internal control		
Pn021	Deceleration time constant	0	0~65535	For internal control		
Pn022	Manual speed	200	1~3500	For trial run		
Pn023	Control mode	0	0~5	0: P-PUL External pulse mode 1: S -Io speed mode 2: S- Vr Potentiometer speed mode 3: P-485 RS485 position mode 4: S-485 RS485 speed mode 5: t-485 RS485 torque mode		

宁波纳川自动化科技有限公司 网站: www.nachuan.cn

网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

				Power-on default display. 0: Main
				interface. 1: Rotation speed. 2, 3:
				Encoder low, high bit. 4, 5: Pulse
				low, high bit . 6, 7: Deviation pulse
Pn024	Monitor display	0	0~11	low, high. 8: Input and output
111024	adjustment	O .	0~11	Output I/O status. 9: Bus voltage.
				10: Current electrical angle. 11:
				Current motor torque.
				12: Regenerative resistor work
				duty cycle
	485			1: 4800 2: 9600
Pn025	communication		1~6	3: 19200 4: 38400
	baud rate			5: 57600 6: 115200
	485			E : .: 11
Pn026	communication	1	1~255	For communication address
	address			setting
D 027	Encoder battery	1	0.1	0 11 1 1: 11
Pn027	alarm	1	0~1	0: enable 1: disable
D 020	Overheat alarm	0.5	0.150	For Overheat alarm
Pn028	threshold setting	95	0~150	threshold setting
D 020	OUT1 output		0.1	0.1.1.7.1.1
Pn029	function	0	0~1	0: In place 1: Z signal

The internal parameters of the drive can be set offline through the drive parameter (Pn) mode, and can also be set online by connecting the Nachuan servo drive software on the PC through the USB cable.

4. Fault alarm and treatment

Phenomenon	Problems	Solutions
		Disconnect the motor winding wire from the
		drive, restart the drive, if there is no alarm,
Err_gL	Overcurrent	please check the motor and motor power line
		for any abnormality; if the alarm is still there,
		the drive is damaged.
	Exceeds the	Check whether the motor power line wire
Err_CC	Position	sequence and encoder line are abnormal. Or
	deviation	whether the load is overloaded.
E-m or	Organialtaga	Restart the drive, if the alarm still exists,
Err_gy	Overvoltage	check if the power supply voltage is too high.
Err_dy	Low	Restart the drive and if the alarm persists,

	voltage	check if the supply voltage is too low.			
		Enter Fn001 interface after power on, long			
Err_SJ	Data error	press enter key, power on again when 'done			
		appears			
Err En	Encoder	Check whether the encoder wiring is			
EII_EII	alarm	abnormal.			
Err_CS	Overspeed	Power off and restart, reduce speed			
Em 2	Overload	Check if the load is overloaded, then power			
Err_g2	Overload	off and restart			
		Regenerative resistor is overheated, adjust the			
Err_gr	Overneat	acceleration and deceleration.			

Note: After solving the alarm or eliminating the causes of the alarm, the drive needs to be power on again to resume normal operation.

V. Control mode and communication protocol

1. Conventional position control mode (Pn023 = P-PUL)

In conventional mode, the drive only receives external signals (pulse, direction, enable) to control the motor operation, and internal operation parameters can be read through the 485 bus.

Position mode setting: set Pn023 to P-PUL (factory default 0, position mode)

Connect the pulse input port: PUL+24/+5 connects to the positive pole of the pulse input port, PUL- connects to the negative pole of the pulse input port.

Connecting direction input: DIR+24/+5 to connect pulse input positive, DIR- to connect direction input negative

Setting driver enable: ENA+/- are connected to the controller enable port, factory default enable is on, you can not connect the control line.

Set the pulse number per revolution Pn001 parameter

Set the default direction Pn002

Adjust and set Pn003, Pn004, Pn0xx and other performance parameters.

2. External IO speed and torque control mode (Pn023 = S-IO)

2.1) External IO speed mode.

Adopting internal self-generated pulse, only need to access the corresponding high level in PUL port (PUL+24,PUL+5 corresponds to 24V and 5V) to run. The speed is controlled by the Pn022 parameter, and the default is 200 revolutions per minute. The running direction is controlled by DIR direction port just like pulse mode.

Speed mode setting: set Pn023 to S-IO.

Set the value of rotation speed: Pn022 (unit: rpm)

Connecting start/stop control signal: PUL+24/+5 connects to the positive terminal of pulse input port and PUL- connects to the negative terminal of pulse input port for start/stop control.

Connecting direction input: DIR+24/+5 connects to pulse input positive, DIR- connects to direction input negative, used for steering control.

Setting acceleration, deceleration and other related performance parameters Pn020, Pn021

2.2) Simple fixed torque mode

The motor takes Pn18 and Pn19 as the maximum torque, and moves according to the set speed of Pn22 before reaching the maximum torque; if the external torque reaches the set value, the motor will stop or be pushed back by the load.

Torque mode setting: Set Pn023 to S-IO.

Setting the value of rotation speed: Pn022 (unit: rpm)

Setting fixed forward/reverse torque, forward Pn018, reverse Pn019, unit is the percentage of motor rated torque

Connect start/stop control signal: PUL+24/+5 connects to the positive pole of pulse input port, PUL- connects to the negative pole of pulse input port for start/stop control.

Connecting direction input: DIR+24/+5 connects to pulse input positive, DIR- connects to direction input negative, used for steering control.

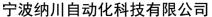
3. External potentiometer speed control mode (Pn023 = S-vr)

Using an external $4.7K\Omega$ potentiometer, connect it to the driver between VR+ and VR- to adjust the speed between 0 and the manual setting speed.

Set rotational speed value: Pn022 (unit: rpm)

4. Modbus position, speed, torque and other control modes

Adopt Modbus protocol RTU mode.


Default communication parameters: baud rate 19200; check bits: odd parity (none), data bit 8, stop bit 1.

To modify the 485 communication baud rate and address you can adjust the following parameters:

Dagistan	Register Content	Default	Parameter	Parameter
Register Definition		Value	Optional	Definition
				1: 4800
	485			2: 9600
	communication	3	1-6	3: 19200
Pn025	baud rate			4: 38400
				5: 57600
				6: 115200
	485			For
Pn026	communication	1	1-255	communication
	address			address setting

For 485 communication, parameter area, monitoring area, reserved area, and control area are set inside the driver, and the corresponding object dictionaries are as follows:

Area	Register a	ddress		Data type/length	Data
	(Hexadecimal)				type/length
Parameter area	0x0000-0x	x0063		Parameter area	uint16
	0x0064			Alarm Code	uint16
	0x0065			Rotation speed	int16
Manitanana	0x0066	(low	16	Current singleturn	int32
Monitor area	bits)			encoder reading	
(read-only, not modifiable)	0x0067	(high	16	information	
modifiable)	bits)				
	0x0068	(low	16	Current lap encoder	int32
	bits)			readout information	
	0x0069	(high	16		
	bits)				
	0x006A	(low	16	Number of pulses	int32
Monitor Area	bits)				
(read-only, not	0x006B	(high	16		
modifiable)	bits)				
inodifiaole)	0x006C	(low	16	Position error	int32
	bits)				

] //X =1111111X					
	0x006D	(high	16		
	bits)				
	0x006E	(low	16	Test	int32
	bits)				
	0x006F	(high	16		
	bits)				
	0x0070			Voltage	uint16
	0x0071			Torque Percentage	int16
	0x0072	(low	16	Encoder angle	int32
	bits)				
	0x0073	(high	16		
	bits)				
	0x0074-0	0x00C7		Remaining address	uint16
Reserved area	0x00C8-	0x0383		Reserved area	uint16
	0x0384			Start-stop control	uint16
	0x0385			Position mode speed	uint16
	0x0386	(lower	16	Number of pulses to	int32
	bits)			run	
	0x0387	(high	16		
	bits)				
	0x0388			Speed mode speed	int16
	0x0389			Torque mode torque	int16
	0x038A			Torque Arrival	uint16
	0x038B			Position Arrival	uint16
Control area	0x038C	(low	16	Position Mode Speed	int32
	bits)				
	0x038D	(high	16		
	bits)				
	0x0390			EEPROM storage	uint16
	0x0392	(low	16	Position Mode	int32
	bits)			Acceleration	
	0x0393	(high	16		
	bits)				
	0x0394 (low 16-1	bit)	Position mode	int32
	0x0395 (high 16-	-bit)	deceleration	

4.1) ModBUS position control mode setting (Pn23 = P-485)

4.1.1) The user can control the servo to run at the set position via Modbus_RTU protocol 485 half-duplex communication.

Execute relative position movement, i.e., the actual motor position at the time the position

instruction trigger takes effect plus the position data in the position register as the next target position.

Register Address	Name of	Parameter	Unit	Effective
	register	Range		mode
0x0385	Position	0,1		0 to 1
	validation			rising
	trigger			edge
0x0386 (low 16 bits)	Position	0x80000000-	Number of	
0x0387 (high 16 bits)		0x7FFFFFFF	pulses	
0x038B	Position	0: not in place.		
	Arrival	1: in place		
0x038C (low 16 bits)	Speed	0x80000000-	Pulses per	
0x038D (high 16		0x7FFFFFFF	second	
bits)				
0x0392 (low 16 bits)	Acceleration	0x80000000-	Pulses/sec^	
0x0393 (high 16 bits)		0x7FFFFFFF	2	
0x0394 (low 16 bits)	Deceleration	0x80000000-	Pulse/sec^2	
0x0395 (high 16 bits)		0x7FFFFFFF		

4.1.2) Example

Pulses per revolution: 10 000 (Pn001=10 000)

Rotation speed: 20 rpm, i.e., 200 000 pulses/second

Acceleration: 500 000 pulses/sec^2 Acceleration: 500 000 pulses/sec^2

Bit shift: 100 revolutions positive. (If address 0x038C is positive, it is forward rotation; if

negative, it is reverse rotation).

Slave number: 1

Modbus command control is shown in the table below:

Step 1: Panel set Pn023=4 (communication position mode), panel set station number to 1 (Pn026=1), power off and restart

Step 2: Set running speed 200 000 pulses/sec, (200 000=0x30D40).

Communication address 0x038C write 0x0D40.

Host sends data to servo 01 06 03 8C 0D 40 4D 05

Communication address 0x038D writes 0X0003.

Host sends data to servo 01 06 03 8D 00 03 59 A4

Step 3: Set the running acceleration 500 000 pulses/sec^2, (500 000=0x7A120).

Communication address 0x0392 writes 0xA120.

Host sends data to servo 01 06 03 92 A1 20 50 2B

Communication address 0x0393 writes 0x0007.

网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

Host sends data to servo 01 06 03 93 00 07 38 61

Step 4: Set the running deceleration 500 000 pulses/sec², (500 000=0x7A120).

Communication address 0x0394 writes 0xA120.

Host sends data to servo 01 06 03 94 A1 20 B0 2A

Communication address 0x0395 writes 0x0007.

Host sends data to servo 01 06 03 95 00 07 D8 60

Step 5: Set the running position to 100 revolutions. (100*10~000 pulses/revolution = 1 000 000 = 0x000F 4240).

Communication address 0x0386 writes 0x4240.

Host sends data to servo 01 06 03 86 42 40 59 37

Communication address 0x0387 writes 0x000F.

Host sends data to servo 01 06 03 87 00 0F 79 A3

Step 6: Position register effective departure start stop. Write 0 to communication address 0x0385 followed by 1 to start.

Host sends data to servo 01 06 03 85 00 00 98 67

Host sends data to servo 01 06 03 85 00 01 59 A7

4.1.3) To stop the motor by braking during operation, the motor can be stopped by writing 0 to the position register. This is done by writing 0 to the 0x0386 and 0x0387 address registers, and then writing 0 to 0x0385 followed by 1.

Step 1: Set the running position 0.

Communication address 0x0386 write 0x0000.

Host sends data to servo 01 06 03 86 00 00 68 67

Communication address 0x0387 writes 0x0000.

Host sends data to servo 01 06 03 87 00 00 39 A7

Step 2: Position register takes effect to trigger start-stop. Write 0 to communication address 0x0385 followed by 1 to start.

Host sends data to servo 01 06 03 85 00 00 98 67

Host sends data to servo 01 06 03 85 00 01 59 A7

4.2) ModBUS speed control mode (Pn23 = S-485)

4.2.1) The user can control the servo to run at the set speed via Modbus_RTU protocol 485 half-duplex communication.

Object dictionary:

Register	Name	Parameter	Unit	Effective
Address		Range		mode
0x0014	Acceleration time constant	0x0000~0xFFFF		
0x0015	Deceleration time	0x0000~0xFFFF		

网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

	constant			
0x0017	Control mode	0x0000~0x0004		Power failure effective
0x0384	Start Stop	0x0000~0x0001		
0x0388	Speed	0xF448~0x0BB8	r/min	
0x0390	EEPROM memory	0x0000~0x0001		

4.2.2)Example:

The motor is running positively at 100r/min. (Positive rotation if the 904 running speed is positive, and reverse rotation if the target speed is negative.) Assuming that the slave station number is 1, the Modbus command control is shown in the table below:

Rotation speed: 100r/min Positive operation

Slave station number: 1

Modbus command control is shown in the table below:

Step 1: Panel set Pn023=4 (communication position mode), panel set station number to 1 (Pn026=1), power off and restart

Step 2: Set running speed 100r/min, (100=0x0064).

Communication address 0x0388 write 0x0064.

Host sends data to servo 01 06 03 88 00 64 08 4F

Step 3: Start operation.

Communication address 0x0384 write 1 to start.

Host sends data to servo 01 06 03 84 00 01 08 67

Step 4: Stop operation.

Communication address 0x0384 write 0 to stop.

Host sends data to servo 01 06 03 84 00 00 C9 A7

4.3) ModBUS torque control mode (Pn23 = t-485)

4.3.1) The user can control the servo to run according to the set torque via Modbus_RTU protocol 485 half-duplex communication.

Object dictionary:

Register	Name	Parameter range	Unit	Effective
Address				mode
0x0014	Acceleration time constant	0x0000~0xFFFF		
0x0015	Deceleration time constant	0x0000~0xFFFF		
0x0017	Control mode	0x0000~0x0004		Power failure effective

网 站: www. nachuan. cn 抖音号: NBnachuan 公众号: NBnachuan

0x0384	Start Stop	0x0000~0x0001		
0x0388	Speed	0xF448~0x0BB8	r/min	
0x0389	Torque	0x0000~0x0064	%	
	Percentage			
0x038A	Torque Arrival	0x0000~0x0001		
0x0390	EEPROM	0x0000~0x0001		
	storage			

4.3.2)Example:

The motor is running at 100r/min positive. (Positive rotation if the 904 running speed is positive, and reverse rotation if the target speed is negative.) Assuming the slave station number is 1, the Modbus command control is shown in the table below:

Rotation speed: 100r/min Positive operation

Slave number: 1

Modbus command control is shown in the table below:

Step 1: Panel set Pn023=4 (communication position mode), panel set station number to 1 (Pn026=1), power off and restart

Step 2: Set running speed 100r/min, (100=0x0064).

Communication address 0x0388 write 0x0064.

Host sends data to servo 01 06 03 88 00 64 08 4F

Step 3: Set torque percentage 50%, (50=0x0032).

Communication address 0x0389 writes 0x0032.

Host sends data to servo 01 06 03 89 00 32 D9 B1

Step 4: Start operation.

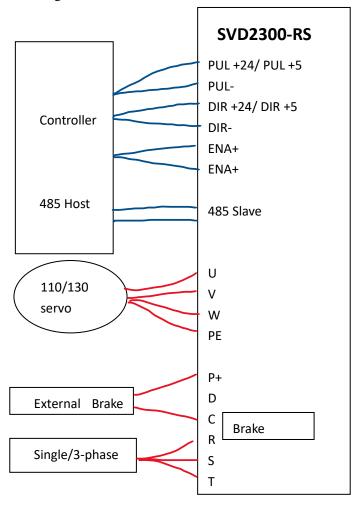
Communication address 0x0384 write 1 to start.

Host sends data to servo 01 06 03 84 00 01 08 67

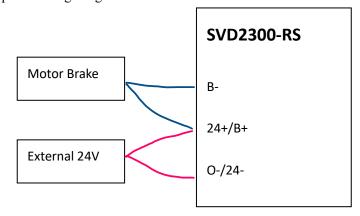
Step 5: Stop operation.

Communication address 0x0384 writes 0 to stop.

Host sends data to servo 01 06 03 84 00 00 C9 A7


When the driver detects that the torque has reached the set value, the servo will send a 1 to

the host 0x038A address as well as a 1 output from the driver's O1 port to indicate that the torque has reached.


VI. Typical application wiring diagram

the SVD2300-RS drive and other components of the AC servo system's typical wiring diagram shown in Figure.

Note: When using an external regenerative resistor, remove the jumper.

Typical Wiring Diagram for Brake Motor

宁波纳川自动化科技有限公司 网 站: www.nachuan.cn 料音号: NBnachuan 公众号: NBnachuan

Note: The motor holding brake must be controlled by the driver, otherwise an unexpected situation such as a flying motor may occur.

网 站: www.nachuan.cn 抖音号: NBnachuan 公众号: NBnachuan

Warranty of Nachuan products

Ningbo Nachuan Automation Technology Co., Ltd. warrants its products against defects in raw materials and workmanship for a period of one year from the date of shipment. During the warranty period, Nachuan will provide free repair service for defective products.

Not included in the warranty:"

Improper wiring, such as mixing power and motor wires, and unplugging with electricity Unauthorized alteration of internal components

Use beyond electrical and environmental requirements

Maintenance process:

Call Nachuan customer service for return authorization prior to shipment;

Send a written description with the shipment, describing the fault phenomenon of the returned drive, the voltage, current and the use of the environment at the time of the fault, the name of the contact person, telephone number and mailing address and other information.

Send the prepaid postage to 3/F, Building 3, Intelligent Equipment R&D Park, No.36 Moganshan Road, Beilun District, Ningbo, China Nachuan Automation Technology.

Warranty Limitations:

Warranty coverage of Nachuan products is limited to the product's devices and workmanship (i.e., consistency), improper use of the damage caused by the warranty is not included!

Nachuan company does not guarantee that its products can be suitable for the customer's specific purpose, because whether it is also suitable for the use of technical specifications and requirements and conditions of use and the environment, due to improper selection by the customer caused by the inapplicability of the problem, does not belong to the warranty.

The Company does not recommend the use of this product for clinical medical purposes.

Release Note

Version	Date	Changes
V1.0	2023.12.07	Initial version